The concept required to solve this problem is associated with potential energy. Recall that potential energy is defined as the product between mass, gravity, and change in height. Mathematically it can be described as
Here,
= Change in height
m = mass of super heroine
g = Acceleration due to gravity
The change in height will be,
The final position of the heroin is below the ground level,
The initial height will be the zero point of our system of reference,
Replacing all this values we have,
Since the final position of the heroine is located below the ground, there will net loss of gravitational potential energy of 10744.81J
Answer:true,because velocity is directly proportional to speed or velocity
Explanation:
Velocity = frequency x wavelength
The velocity or speed varies directly with the frequency, so as the frequency is increased, the velocity or speed is also increased
its c!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Answer:
Time required by boat 1 for the round trip is less than that of boat 2.
Hence, boat 1 wins.
Explanation:
Case 1: Boat 1
Speed of boat =
time =
While going to another end
time =
time =
time = 1 hour
While going back,
time =
time =
time = 1 hour
Total time taken by boat 1 is,
Total time by boat 1 = 1 hour + 1 hour = 2 hour
Total time by boat 1 = 2 hour
Total time taken by boat 1 for the round trip is 2 hour.
Case 2: Boat 2
Speed of boat =
time =
While going to another end
time =
time =
time = 2 hour
While going back,
time =
time =
time = 0.66 hour
Total time taken by boat 2 is,
Total time by boat 1 = 2 hour + 0.66 hour
Total time by boat 1 = 2.66 hour
Total time taken by boat 2 for the round trip is 2.66 hour.
Time required by boat 1 for the round trip is less than that of boat 2.
Hence, boat 1 wins.
Answer:
L = 0.635m
Explanation:
This problem involves the concept of stationary waves in pipes. For pipes closed at one end,
The frequency f = nv/4L for n = 1,3,5....n
For pipes open at both ends
f = nv/2L for n = 1,2,3,4...n
Assuming the pipe is closed at one end and that velocity of sound is 343m/s in air. If we are right we will obtain a whole number for n.
The film solution can be found in the attachment below.