Answer: X = 52,314.12 N
Explanation: Let X be the force the feet of the athlete exerts on the floor.
According to newton's third law of motion the floor gives an upward reaction based on the weight of the athlete and the barbell which is known as the normal reaction ( based on the mass of the athlete and the barbell)
Mass of athlete = 87kg, mass of barbell = 600/ hence total normal reaction from the floor = 87* 61.22/ 9.8 *9.8 = 52,200N.
The athlete lifts the barbell from rest thus making it initial velocity u=0, distance covered = S = 0.65m and the time taken = 1.3s
The acceleration of the barbell is gotten by using the equation of constant acceleration motion
S= ut + 1/2at²
But u = 0
S = 1/2at²
0.65 = 1/2 *a (1.3)²
0.65 = 1.69 * a/2
0.65 * 2 = 1.69 * a
a = 0.65 * 2/ 1.69
a = 0.77m/s²
According to newton's second law of motion
Resultant force = mass * acceleration
And resultant force in this case is
X - 52,200 = (87 + 61.22) * 0.77
X - 52,200 = 148.22 * 0.77
X - 52, 200 = 114.132
X = 114.132 + 52,200
X = 52,314.12 N
Answer:
meteorite is a piece of interplanetary debris that lives its fiery drops during a through the earth's atmosphere and strikes the surface of the earth.
Explanation:
the meteorites which are most useful for the determination of the age of the solar system are the primitive meteorites. they consist light of colored or grey silicates mixed with metallic grains. the parent bodies of these meteorites are also mostly believed to be pieces asteriods left after they formed in the solar system.
Answer:
Mass remains constant but weight reduces
Explanation:
Mass is the amount of matter in an object so whether on moon or any other planet, it does not change despite the changes in acceleration.
Weight is a product of mass and acceleration due to gravity, expressed as W=mg where m is the mass, W is weight and g is acceleration. From the above formula, it is evident that when you decrease g, then W also decreases while m is constant. Similarly, when m is constant and g is increased then W also increases.
Therefore, for this case, since g decreases, the weight decreases but mass remains constant.
The best answer to go with is b
Answer:
h = 2.64 meters
Explanation:
It is given that,
Mass of one ball,
Speed of the first ball, (upward)
Mass of the other ball,
Speed of the other ball, (downward)
We know that in an inelastic collision, after the collision, both objects move with one common speed. Let it is given by V. Using the conservation of momentum to find it as :
V = 7.2 m/s
Let h is the height reached by the combined balls of putty rise above the collision point. Using the conservation of energy as :
h = 2.64 meters
So, the height reached by the combined mass is 2.64 meters. Hence, this is the required solution.