Answer:
4
Step-by-step explanation:
Since the base angles are the same, the side have to be the same
ML = MN
4x = x+3
Subtract x from each side
4x-x = x+3-x
3x= 3
Divide by 3
3x/3 = 3/3
x = 1
We want the length of MN
MN = x+3 = 1+3 = 4
Consider a homogeneous machine of four linear equations in five unknowns are all multiples of 1 non-0 solution. Objective is to give an explanation for the gadget have an answer for each viable preference of constants on the proper facets of the equations.
Yes, it's miles true.
Consider the machine as Ax = 0. in which A is 4x5 matrix.
From given dim Nul A=1. Since, the rank theorem states that
The dimensions of the column space and the row space of a mxn matrix A are equal. This not unusual size, the rank of matrix A, additionally equals the number of pivot positions in A and satisfies the equation
rank A+ dim NulA = n
dim NulA =n- rank A
Rank A = 5 - dim Nul A
Rank A = 4
Thus, the measurement of dim Col A = rank A = five
And since Col A is a subspace of R^4, Col A = R^4.
So, every vector b in R^4 also in Col A, and Ax = b, has an answer for all b. Hence, the structures have an answer for every viable preference of constants on the right aspects of the equations.
Explanation:
First, switch sides of an equation.
Then, you subtract by the 80 from both sides of an equation.
And finally, simplify and subtract the numbers.
Hope this helps!
Thank you!
Have a great day!
Answer:
Step-by-step explanation:
sub in all your x values into the linear equation it gives you
once you have your table you should be able to figure out the rest if the questions !!
Answer:
19
Step-by-step explanation: