Answer:
evaporation?
Explanation:
evaporate the water leaving behind the sand?
To squeeze a gas into a dmaller place is to compress it.
<h3>
Answer:</h3>
138 g SO₂
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] 2.16 moles SO₂
[Solve] grams (mass) SO₂
<u>Step 2: Identify Conversions</u>
[PT] Molar Mass of S - 32.07 g/mol
[PT] Molar Mass of O - 16.00 g/mol
Molar Mass of SO₂ - 32.07 + 2(16.00) = 64.07 g/mol
<u>Step 3: Convert</u>
- [DA] Set up:
- [DA] Multiply/Divide [Cancel out units]:
<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
138.391 g SO₂ ≈ 138 g SO₂
I am unsure if this is correct, but this might be the whole section:
- The top of the syringe is a circle. You need to compute its area for use in later computations of pressure values. Start by using a ruler to measure the diameter. Estimate to the nearest 0.01 cm. <em>Answer: </em><em>3.60 </em><em>cm</em>
- Divide by two to find the radius. Maintain significant figures. <em>Answer: </em><em>1.80 </em><em>cm</em>
- Substitute the radius into the formula A = πr² to find the area of the top of the syringe. Maintain significant figures. <em>Answer: </em><em>10.2 </em><em>cm²</em>