m = Mass of the refrigerator to be moved to third floor = 136 kg
g = Acceleration due to gravity by earth on the refrigerator being moved = 9.8 m/s²
h = Height to which the refrigerator is moved = 8 m
W = Work done in lifting the object
Work done in lifting the object is same as the gravitational potential energy gained by the refrigerator. hence
Work done = Gravitation potential energy of refrigerator
W = m g h
inserting the values
W = (136) (9.8) (8)
W = 10662.4 J
Answer:
The potential difference between the places is 0.3 V.
∴ 1st option i.e. 0.3V is the correct option.
Explanation:
Given
Work done W = 3J
Amount of Charge q = 10C
To determine
We need to determine the potential difference V between the places.
The potential difference between the two points can be determined using the formula
Potential Difference (V) = Work Done (W) / Amount of Charge (q)
or
substituting W = 3 and q = 10 in the formula
V
Therefore, the potential difference between the places is 0.3 V.
∴ 1st option i.e. 0.3V is the correct option.
Answer:
Goal or Field Goal
Explanation:
It is a goal in a sport like hockey or it is a field goal in football.
Answer:
B = 62.9 N
Explanation:
This is an exercise on Archimedes' principle, where the thrust force equals the weight of the liquid
B = ρ g V
write the equilibrium equation
T + B -W = 0
B = W- T (1)
use the density to write the weight
ρ = m / V
m = ρ V
W = ρ g V
substitute in 1
B = m g -T
B = g V - T
To finish the calculation, the density of the material must be known, suppose it is steel \rho_{body} = 7850 kg / m³
calculate
B = 7850 9.8 1.20 10⁻³ - 29.4
B = 92.3 - 29.4
B = 62.9 N
Answer:
An active pendulum has the most kinetic energy at the lowest point of its swing when the weight is moving fastest.
Explanation:
SO YOU HAVE THE LEAST KINETIC ENERGY AT THE HIGHEST POINT OF THE SWING WHEN IT'S NOT ACTIVE