You know where the glacier is now, and how far it moves in
one year. The question is asking how close to the sea it will be
after many years.
Step-1 ... you have to find out how many years
Step-2 ... you have to figure out how far it moves in that many years
Step-3 ... you have to figure out where it is after it moves that far
The first time I worked this problem, I left out the most important
step ... READ the problem carefully and make SURE you know
the real question. The first time I worked the problem, I thought
I was done after Step-2.
============================
Step-1: How many years is it from 2010 to 2030 ?
(2030 - 2010) = 20 years .
Step-2: How far will the glacier move in 20 years ?
It moves 0.004 mile in 1 year.
In 20 years, it moves 0.004 mile 20 times
0.004 x 20 = 0.08 mile
Step-3: How far will it be from the sea after all those years ?
In 2010, when we started watching it, it was 6.9 miles
from the sea.
The glacier moves toward the sea.
In 20 years, it will be 0.08 mile closer to the sea.
How close will it be ?
6.9 miles - 0.08 mile = 6.82 miles (if it doesn't melt)
Answer:
It is a possible explanation of events using prior knowledge
Step-by-step explanation:
y=9
Step-by-step explanation:
y=2(6)-3
y=12-3
y=9
Answer:
100 pi cm^2
or approximately 314 cm^2
Step-by-step explanation:
The surface area of a sphere is given by
SA = 4 pi r^2
The radius is 5
SA = 4 *pi * 5^2
SA = 4*pi(25
SA = 100 pi cm^2
If pi is 3.14
SA = 100 *3.14 = 314 cm^2
Answer: 1554 apples
Step-by-step explanation: In order to find the distance you have to subtract the biggest number from the smallest number.
4599 - 3045 = 1554 apples