<h3>
Answer:</h3>
1.83 × 10⁻⁷ mol Au
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
3.60 × 10⁻⁵ g Au (Gold)
<u>Step 2: Identify Conversions</u>
Molar Mass of Au - 196.97 g/mol
<u>Step 3: Convert</u>
- Set up:
- Multiply:
<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
1.82769 × 10⁻⁷ mol Au ≈ 1.83 × 10⁻⁷ mol Au
Answer:
The mechanism for the formation of hexamethylenetetraamine predicts the formation of aminomethanol from the addition of ammonia to formaldehyde. This molecule subsequently undergoes unimolecular decomposition to form methanimine and water.
Explanation:
Brainliest please?
Answer:
M₂ = 0.0745 M
Explanation:
In case of titration , the following formula can be used -
M₁V₁ = M₂V₂
where ,
M₁ = concentration of acid ,
V₁ = volume of acid ,
M₂ = concentration of base,
V₂ = volume of base .
from , the question ,
M₁ = 0.0952 M
V₁ = 38.73 mL
M₂ = ?
V₂ = 49.48 mL
Using the above formula , the molarity of ammonia , can be calculated as ,
M₁V₁ = M₂V₂
0.0952 M * 38.73 mL = M₂* 49.48 mL
M₂ = 0.0745 M
Answer:
Magnesium oxide is a simple basic oxide, because it contains oxide ions. It reacts with water to form magnesium hydroxide which is a base.
Answer:
The answer is D) all of the above
Explanation:
This is because if something has mass then it is composed of matter.
Can I have brainliest please?