The correct answer is the second option. During fusion, uranium atoms are fused together. Fusion reaction happens when two or more nuclei combine or collide to form an element with a higher atomic number. In this process, some of the matter of the fusing nuclei is converted to energy.
I believe you have to label out the positive metal ion and the delocalized electrons. They're the 2 things that makes up a metal structure.
In the diagram, the circles with the + symbol are the positive metal ions, since + represents positive. And the remaining - circles are the delocalized electrons, as electrons are negative.
And for how a metal conducts electricity, since they're delocalized mobile electrons present in any metal structures, they're able to move away from the metal to the positive side of the battery and more electrons can replace their place flowing from the negative side.
Evaporation occurs when water molecules on the surface gain enough energy to enter the atmosphere. However, stronger intermolecular forces between water molecules cause them to be strongly attracted to each other and to tend to stay in the liquid phase. When the temperature is raised (when heat is applied), more molecules gain the energy needed to escape these intermolecular forces and go into the vapor phase.
Therefore the best answer is D.
We have to get the relationship between metallic character and atomic radius.
Metallic character increases with increase in atomic radius and decrease with decrease of atomic radius.
If electrons from outermost shell of an element can be removed easily, that atom can be considered to have more metallic character.
With increase in atomic radius, nuclear force of attraction towards outermost shell electron decreases which facilitates the release of electron.
With decrease in atomic radius, nuclear force of attraction towards outermost shell electrons increases, so electrons are hold tightly to nucleus. Hence, removal of electron from outermost shell becomes difficult making the atom less metallic in nature.