I think a, im not a 100% sure tho!!!
Answer:
The temperature of the metal is
Explanation:
From the question we are told that
The mass of the metal is
The specific heat of the metal is
The mass of the oil is
The temperature of the oil is
The specific heat of oil is
The equilibrium temperature is
According to the law of energy conservation
Heat lost by metal = heat gained by the oil
So
The quantity of heat lost by the metal is mathematically represented as
=>
Where the temperature of metal before immersion
The negative sign show heat lost
The quantity of gained t by the metal is mathematically represented as
=>
So
substituting values
=>
Answer:
The discharge of the stream at this location is 40 cubic meters per second.
Explanation:
The discharge is the volume flow rate of the water in the stream. For this purpose we can use the following formula:
Discharge = Volume Flow Rate = (Cross-Sectional Area)(Velocity of Stream)
Volume Flow Rate = (Width of Stream)(Depth of Stream)(Velocity of Stream)
Volume Flow Rate = (4 meters)(2 meters)(5 meters per second)
<u>Volume Flow Rate = 40 cubic meters per second</u>
Therefore, the discharge of the stream at this location is found to be <u>40 cubic meters per second</u>
This result shows that 40 cubic meters volume of water passes or discharges through this point in a time of one second. Hence, this is called the volume flow rate or the discharge of the stream.
If I remember correctly (from my studies long time ago) the layers are from the outer to the center:
SiAl : Silicon-Aluminum
SiMa : Silicon-Magnesium (although should be Mg)
NiFe : Nickel-Iron
The SiMa layer should have the lightest elements (Magnesium is lighter than Aluminum)
Answer:
The answer to your question is
Explanation:
Data
mass = 0.5kg
T1 = 35
T2 = ?
Q = - 6.3 x 10⁴ J = - 63000 J
Cp = 4184 J / kg°C
Formula
Q = mCp(T2 - T1)
T2 = T1 + Q/mCp
Substitution
T2 = 35 - 63000/(0.5 x 4184)
T2 = 35 - 63000/2092
T2 = 35 - 30.1
T2 = 4.9 °C