Answer:
what is the question I cannot click the
Explanation:
Answer: 361° C
Explanation:
Given
Initial pressure of the gas, P1 = 294 kPa
Final pressure of the gas, P2 = 500 kPa
Initial temperature of the gas, T1 = 100° C = 100 + 273 K = 373 K
Final temperature of the gas, T2 = ?
Let us assume that the gas is an ideal gas, then we use the equation below to solve
T2/T1 = P2/P1
T2 = T1 * (P2/P1)
T2 = (100 + 273) * (500 / 294)
T2 = 373 * (500 / 294)
T2 = 373 * 1.7
T2 = 634 K
T2 = 634 K - 273 K = 361° C
V = u + at
<span>= 0 + (9.81)(10) </span>
<span>= 98.1m/s </span>
<span>Ignoring air resistance.</span>
Answer:
Option D, only on the portion of the Earth facing directly toward the Moon
Explanation:
Tides are caused by the gravitational pull of moon. The part of earth that faces the moon experiences the highest gravitational force and hence the high tides will occur in this regions only. The regions that do not faces the moon experiences low tides. It is the gravity of moon that attracts the ocean water towards itself.
Hence, Option D is correct
Answer:
The separation of the 2 points should be 50.0 meters.
Explanation:
According to Rayleigh's scattering criteria the angular separation between 2 points to be resolved equals
Applying the given values we get
thus the linear separation equals
Applying the given values we get