Answer:
Uranium must be purified before it is used as a fuel source
Explanation:
The purer the uranium sample, the more the concentration of uranium in the fuel is.
Whenever uranium is extracted from nature, it contains a lot of impurities. Only a few special nuclear reactors can utilize uranium in this raw state. most of the others have to get uranium to become about 3% pure before they begin using it.
To do this, uranium has to be passed through a series of chemical reactions all with the aim of extracting the other compounds that may be present in the fuel.
According to Bronsted-Lowry reaction- an acid is any substance that donates a proton (H+ ion) to another substance hence these two substance are acid aspirin (acetylsalicyclic acid) and hydrochloric acid (HCl). And there are two pairs - an acid with a corresponding conjugate base and a base with a corresponding conjugate acid. These pairs are called conjugate acid-base pairs.
Answer: 1.027 x 10^6 g= 1027kg
In this question, you are given the volume of the blimp (2.027×10^5 ft^3) and the density of the gas(0.179g/L). To answer this question, you need to convert the volume unit into liter. The calculation would be: 2.027×10^5 ft^3 x 28.3168L/ft3= 57.398 x 10^5L= 5.74x10^6L
Then to find the mass, multiply the volume with the density. The calculation would be: 5.74x10^6L x 0.179g/L= 1.027 x 10^6 g= 1027kg
The uncertainty principle is one of the most famous (and probably misunderstood) ideas in physics. It tells us that there is a fuzziness in nature, a fundamental limit to what we can know about the behaviour of quantum particles and, therefore, the smallest scales of nature. Of these scales, the most we can hope for is to calculate probabilities for where things are and how they will behave. Unlike Isaac Newton's clockwork universe, where everything follows clear-cut laws on how to move and prediction is easy if you know the starting conditions, the uncertainty principle enshrines a level of fuzziness into quantum theory.
This Should help you
Answer:
The lock-and-key model:
c. Enzyme active site has a rigid structure complementary
The induced-fit model:
a. Enzyme conformation changes when it binds the substrate so the active site fits the substrate.
Common to both The lock-and-key model and The induced-fit model:
b. Substrate binds to the enzyme at the active site, forming an enzyme-substrate complex.
d. Substrate binds to the enzyme through non-covalent interactions
Explanation:
Generally, the catalytic power of enzymes are due to transient covalent bonds formed between an enzyme's catalytic functional group and a substrate as well as non-covalent interactions between substrate and enzyme which lowers the activation energy of the reaction. This applies to both the lock-and-key model as well as induced-fit mode of enzyme catalysis.
The lock and key model of enzyme catalysis and specificity proposes that enzymes are structurally complementary to their substrates such that they fit like a lock and key. This complementary nature of the enzyme and its substrates ensures that only a substrate that is complementary to the enzyme's active site can bind to it for catalysis to proceed. this is known as the specificity of an enzyme to a particular substrate.
The induced-fit mode proposes that binding of substrate to the active site of an enzyme induces conformational changes in the enzyme which better positions various functional groups on the enzyme into the proper position to catalyse the reaction.