Calculate the circumference of the two semi circles, which equals a full circle. Then add the two sides of the track.
Circumference is pi x diameter = 3.14 x 22.8 = 71.592, so, you would need to add 71.592 + 49.2 + 49.2 = 169.992 meters, and that would be the length of one lap of the track.
Answer:
The pairs are (13,15) and (-15,-13).
Step-by-step explanation:
If n is an odd integer, the very next odd integer will be n+2.
n+1 is even (so we aren't using this number)
The sum of the squares of (n) and (n+2) is 394.
This means
(n)^2+(n+2)^2=394
n^2+(n+2)(n+2)=394
n^2+n^2+4n+4=394 since (a+b)(a+b)=a^2+2ab+b^2
Combine like terms:
2n^2+4n+4=394
Subtract 394 on both sides:
2n^2+4n-390=0
Divide both sides by 2:
n^2+2n-195=0
Now we need to find two numbers that multiply to be -195 and add up to be 2.
15 and -13 since 15(-13)=-195 and 15+(-13)=2
So the factored form is
(n+15)(n-13)=0
This means we have n+15=0 and n-13=0 to solve.
n+15=0
Subtract 15 on both sides:
n=-15
n-13=0
Add 13 on both sides:
n=13
So if n=13 , then n+2=15.
If n=-15, then n+2=-13.
Let's check both results
(n,n+2)=(13,15)
13^2+15^2=169+225=394. So (13,15) looks good!
(n,n+2)=(-15,-13)
(-15)^2+(-13)^2=225+169=394. So (-15,-13) looks good!
Answer:
a)
b)
c)
d) E(3X + 2) = 21.35
e)
f) V(3X+2) = 140.832
g) E(X+1) = 7.45
h) V(X+1) = 15.648
Step-by-step explanation:
a)
b)
c)
d)
e)
f)
g)
h)