Answer:
When the ball is held motionless above the floor, the ball possesses only GPE energy.If the ball is dropped, its GPE energy decreases as it falls.If the ball is dropped, its KE energy increases as it falls.
Explanation:
If the ball is held motionless, then its kinetic energy is equal to zero, since kinetic energy depends on the velocity. And the ball is held above the ground, which means it possesses gravitational potential energy.
If the ball is dropped, its height will decrease, therefore its gravitational potential energy will decrease. Along the way, the ball will be in free fall, and therefore its velocity will increase, hence its kinetic energy.
Let F be the magnitude of the frictional force. This force performs an amount of work W on the bullet such that
W = -Fx
where x is the distance over which F is acting. This is the only force acting on the bullet as it penetrates the tree. The work-energy theorem says the total work performed on a body is equal to the change in that body's kinetic energy, so we have
W = ∆K
-Fx = 0 - 1/2 mv²
where m is the body's mass and v is its speed.
Solve for F and plug in the given information:
F = mv²/(2x)
F = (0.00426 kg) (881 m/s)² / (2 (0.0444 m))
F = 37,234.8 N ≈ 37.2 kN
Answer:
Air resistance have some significant role in projectile motion if the motion lasts for some time.
Explanation:
- Air resistance or air drag seems to be important in daily actvities and games like baseball.
- The trajectory of the projectile with or without air resistance or air drag is totally different.
- When we neglect air drag, the only acting force is gravity against the motion so the maximum height and range are suppose Hmax and R.
- Now, when we consider air drag, it is important to notice that there are two forces against the motion of the ball and along the direction of gravity. It seems that both maximum height and range are lesser Hmax'< Hmax and R'<R.
The linear speed of the ladybug is 4.1 m/s
Explanation:
First of all, we need to find the angular speed of the lady bug. This is given by:
where
T is the period of revolution
The period of revolution is the time taken by the ladybug to complete one revolution: in this case, since it does 1 revolution every second, the period is 1 second:
T = 1 s
Therefore, the angular speed is
Now we can find the linear speed of the ladybug, which is given by
where:
is the angular speed
r = 65.0 cm = 0.65 m is the distance of the ladybug from the axis of rotation
Substituting, we find
Learn more about angular speed:
brainly.com/question/9575487
brainly.com/question/9329700
brainly.com/question/2506028
#LearnwithBrainly
Answer:
The bronchioles function is to deliver air to tiny sacs called alveoli where oxygen and carbon dioxide are exchanged.
Explanation:
Bronchioles are air passages inside the lungs that branch off like tree limbs from the bronchi—the two main air passages into which air flows from the trachea (windpipe) after being inhaled through the nose or mouth. The bronchioles deliver air to tiny sacs called alveoli where oxygen and carbon dioxide are exchanged.