Applying diffraction equations;
d = 0.01/Number of lines; where 0.01 m = 1 cm, and d = spacing between lines
Therefore,
d = 0.01/2000 = 5*10^-6 m
Additionally,
d*Sin x = m*y; where x = Angle, m = order = 1, y = wavelength = 520 nm =520*10^-9 m
Substituting;
Sin x = my/d = (1*520*10^-9)/(5*10^-6) = 0.1040
x = Sin ^-1(0.104) = 5.97°
Therefore, first-order maximum for 520 nm will be 5.97°.
initial speed of 226000 m/s
acceleration of 4.0 x 1014 m/s2,
speed of 781000 m/s
What is Acceleration?
- Acceleration is a rate of change of velocity with respect to time with respect to direction and speed.
- A point or an object moving in a straight line is accelerated if it speeds up or slows down.
- Acceleration formula can be written as,
a = (v - u ) / t m/s²
As we have to find the time taken, the formula can be altered as,
where, t - time taken to reach a final speed
v - final velocity
u - initial velocity
a - acceleration.
Substituting all the given values,
= 1.3875 × 10⁻⁹ seconds.
So, taken to reach the final speed is found to be 1.3 × 10⁻⁹ 8iH..
Answer:
Accuracy is how close a measured value is to an accepted value. <u>Precision is how close measurements are to one another.</u> To make measurements, you have to evaluate both the accuracy and the precision to get a correct value.