<span>c = speed of light = 3.00 x 10^5 km/s = 3.00 x 10^8 m/s
λ = wavelength of the microwave radiation = 3.50 cm = 0.035 m
f = frequency (in Hertz) = to be determined
f = c/λ = 3.00 x 10^8 m/s / 0.035 m
f = 8.57 x 10^9 Hz Frequency</span>
Mutual
They are balanced steadily which means they’re at the same point
Answer:
87.5 mi/hr
Explanation:
Because a = Δv / Δt (a = vf - vi/ Δt), we need to find the acceleration first to know the change in velocity so we can determine the final velocity.
vf = 60 mi/hr
vi = 0 mi/hr
Δt = 8 secs
a = vf - vi/ Δt
= 60 mi/hr - 0 mi/hr/ 8 secs
= 60 mi/hr / 8 secs
= 7.5 mi/hr^2
Now that we know the acceleration of the car is 7. 5 mi/hr^2, we can substitute it in the acceleration formula to find the final velocity when the initial velocity is 50 mi/hr after 5 secs.
vi = 50 mi/ hr
Δt = 5 secs
a = 7.5 mi/ hr^2
a = vf - vi/ Δt
7.5 = vf - 50 mi/hr / 5 secs
37.5 = vf - 50
87.5 mi/ hr = vf
Explanation:
If potassium is burnt the ions go into a high state of energy. Once they cool, it gives off energy in the form of a visible spectrum which has a characteristic color Now, The cobalt glass blocks out yellow light, and potassium ion which is purple in color is visible.
Answer:
H2SO4 + Al(OH)3 = Al2(SO4)3 + H2O
Explanation: