Answer:
a weak bond between two molecules resulting from an electrostatic attraction between a proton in one molecule and an electronegative atom in the other.
Explanation:
For example, in water molecules (H2O), hydrogen is covalently bonded to the more electronegative oxygen atom. Therefore, hydrogen bonding arises in water molecules due to the dipole-dipole interactions between the hydrogen atom of one water molecule and the oxygen atom of another H2O molecule.
Answer:
<em>The correct option is A) Arrhenius</em>
Explanation:
According to the Arrhenius concept of acids and bases, an acid must produce H+ ions when it is present in a solution and the base must produce OH- ions when placed in a solution.
Ammonia does not contain OH- ions of its own when dissolved in water.
The reaction of ammonia dissolving is water can be written as:
NH3 + H2O ⇌ NH4+ + OH−
As we can see from the equation, ammonia does form OH- ions but it does not have OH- ions on its own.
Hence, according to the Arrhenius concept, NH3 is not a base.
The answer is 1 and 3. The number of atoms per molecule of these three substance is not equal. So they will not contain same number of atoms. And for gas, under same condition with same number of moles will have the same volume. The g.f.w is related to the atomic mass. So they are different.
The fraction of the original amount remaining is closest to 1/128
<h3>Determination of the number of half-lives</h3>
- Half-life (t½) = 4 days
- Time (t) = 4 weeks = 4 × 7 = 28 days
- Number of half-lives (n) =?
n = t / t½
n = 28 / 4
n = 7
<h3>How to determine the amount remaining </h3>
- Original amount (N₀) = 100 g
- Number of half-lives (n) = 7
- Amount remaining (N)=?
N = N₀ / 2ⁿ
N = 100 / 2⁷
N = 0.78125 g
<h3>How to determine the fraction remaining </h3>
- Original amount (N₀) = 100 g
- Amount remaining (N)= 0.78125 g
Fraction remaining = N / N₀
Fraction remaining = 0.78125 / 100
Fraction remaining = 1/128
Learn more about half life:
brainly.com/question/26374513