<u>Answer:</u> The molality of the solution is 0.11 m
<u>Explanation:</u>
We are given:
Mole fraction of methanol = 0.135
This means that 0.135 moles of methanol is present in 1 mole of a solution
Moles of ethanol = 1 - 0.135 = 0.865 moles
To calculate the mass for given number of moles, we use the equation:
Moles of ethanol = 0.865 moles
Molar mass of ethanol = 46 g/mol
To calculate the molality of solution, we use the equation:
Where,
= Given mass of solute (methanol) = 0.135 g
= Molar mass of solute (methanol) = 32 g/mol
= Mass of solvent (ethanol) = 39.79 g
Putting values in above equation, we get:
Hence, the molality of the solution is 0.11 m
Answer:
A non-polar liquid.
Explanation:
Whether a substance dissolves quickly or not depends on how strongly the molecules (or atoms of an element) of a substance are attracted to one another. These interactions between atoms and/or molecules are called intermolecular forces, or IMFs for short. There are several different ones, and these are distinguished from <em>intra</em>molecular forces which are the bonds holding atoms in the molecule together. Attached is a nice little summary of these forces to consider. Our decision lies within the fact that we must pick the substance that experiences the strongest IMF (the one with the most energy). As it turns out, a dipole in a molecule confers some charge distribution on the molecule which makes slightly positive and negative ends. These can attract each other, and it's called dipole-dipole interactions. It can technically happen in a mixture, but let's assume we're dealing with pure substances. Dipoles can only form in polar compounds however, so a non-polar liquid (which is composed of non-polar molecules), will lack these dipoles and therefore cannot form dipole-dipole interactions between the molecules. This results in only having something called dispersion forces (which really every molecule attraction has - so this is the only one). It is very weak, and since the attraction between these molecules is weak, they will tend to come apart, and evaporate. You can think of the IMFs like glue, and a weak glue will not hold the molecules together well, and they will evaporate away.
On the other hand, polar (from dipole interactions) compounds can have general dipole-dipole interactions or hydrogen-bonding interactions (which is a special type of dipole-dipole interaction). H-bonding requires a Hydrogen bonded to either a Nitrogen, Oxygen, or Fluorine to do this. The main thing, is the non-polar ones don't have a dipole, and so they can't form a good intermolecular bond and evaporate quickly.
Water can H-bond, which is why it takes so long to dry and for it to evaporate in general. Nail polish, which is really a solution of acetone, has considerably weaker dipole-dipole bonds (compared to H-bonds), and evaporates quicker than water. Hope this helps!
Note: Figure taken from Chemistry: The Molecular Nature of Matter and Change 8th edition.
Answer:
NaCl (common salt)
Explanation:
it is called sodium chloride
Answer:
<u>The answer is</u>: <em>B. </em><em>Energy lost to the environment during the reaction must be replaced.</em>
Explanation:
The answer is 3.
<span>The relation between number of half-lives (n) and decimal amount remaining (x) can be expressed as:
</span>
We need to calculate n, but we need x to do that. To calculate what p<span>ercentage of a radioactive species would be found as daughter material, we must calculate what amount remained:
1.28 -</span> 1.12 = 0.16
If 1.28 is 100%, how much percent is 0.16:
1.28 : 100% = 0.16 : x
x = 12.5%
Presented as decimal amount:
x = 0.125
Now, let's implement this in the equation:
<span>
</span>
Because of the exponent, we will log both sides of the equation:
<span>
</span>
Therefore, 3 half-lives have passed <span> since the sample originally formed.</span>