<u>Answer:</u> The energy released in the given nuclear reaction is 1.3106 MeV.
<u>Explanation:</u>
For the given nuclear reaction:
We are given:
Mass of = 39.963998 u
Mass of = 39.962591 u
To calculate the mass defect, we use the equation:
Putting values in above equation, we get:
To calculate the energy released, we use the equation:
(Conversion factor: )
Hence, the energy released in the given nuclear reaction is 1.3106 MeV.
Answer:
1250N
Explanation:
This question is based on pascal's Law.
So By Pascal's Law
=
therefore =force on input piston =25N
= Force or weight on output person.
therefore after putting the values we get,
= (25x 1500)/30
=1250N
Answer:
190 °C
Step-by-step explanation:
The pressure is constant, so this looks like a case where we can use <em>Charles’ Law</em>:
V₁/T₁ = V₂/T₂ Invert both sides of the equation.
T₁/V₁ = T₂/V₂ Multiply each side by V₂
T₂ = T₁ × V₂/V₁
=====
V₁ = 3.75 L; T₁ = (37 + 273.15) K = 310.15 K
V₂ = 5.6 L; T₂ = ?
=====
T₂ = 310.15 × 5.6/3.75
T₂ = 310.15 × 1.49
T₂ = 463 K
t₂ = 463 – 273.15
t₂ = 190 °C
Be kind yk? tell him have some respect for your relationship and if he can't then cut him off completely
it's Lithium or Li
..............................