Answer:
(1) cathode: Y
(2) anode X
(3) electrons in the wire flow toward: Y
(4) electrons in the wire flow away from: X
(5) anions from the salt bridge flow toward X
(6) cations from the salt bridge flow toward Y
(7) gains mass: Y
(8) looses mass X
Explanation:
The voltaic cell uses two different metal electrodes, each in an electrolyte solution. The anode will undergo oxidation and the cathode will undergo reduction. The metal of the anode will oxidize, going from an oxidation state of 0 (in the solid form) to a positive oxidation state, and it will become an ion. At the cathode, the metal ion in the solution will accept one or more electrons from the cathode, and the ion’s oxidation state will reduce to 0. This forms a solid metal that deposits on the cathode. The two electrodes must be electrically connected to each other, allowing for a flow of electrons that leave the metal of the anode and flow through this connection to the ions at the surface of the cathode. This flow of electrons is an electrical current that can be used to do work, such as turn a motor or power a light.
Answer:
The specific heat for the metal is 0.466 J/g°C.
Explanation:
Given,
Q = 1120 Joules
mass = 12 grams
T₁ = 100°C
T₂ = 300°C
The specific heat for the metal can be calculated by using the formula
Q = (mass) (ΔT) (Cp)
ΔT = T₂ - T₁ = 300°C - 100°C = 200°C
Substituting values,
1120 = (12)(200)(Cp)
Cp = 0.466 J/g°C.
Therefore, specific heat of the metal is 0.466 J/g°C.
Answer:
3.1 x 10⁻²¹ Nm
Explanation:
When placed in an external electric filed, an electric dipole experiences a torque. and this torque is represented mathematically with the equation:
torque (τ) = dipole moment vector (P) x electric field vector (E)
τ = P. E . sin θ
where θ is the angle between the water molecule and the electric field, which in this case is 90° (because this is where the torque is maximum)
τ = 6.2x10⁻³⁰Cm . 5.0x10⁸ N/C . sin90
τ = 6.2x10⁻³⁰Cm . 5.0x10⁸ N/C . 1
solve for τ
τ = 3.1 x 10⁻²¹ Nm
the maximum possible torque on the water molecule is therefore 3.1 x 10⁻²¹ Nm
Answer:
It is both accurate and precise.
Explanation:
Precision and accuracy are two different terms used to describe data or measurements. Accuracy refers to how close a set of measurements/experimental values is to an accepted or correct value while Precision refers to how close a series of experimental values are to one another.
In the given set of data in the question below, the Correct Value is 59.2 while the experimental values are as follows;
Trial 1: 58.7
Trial 2: 59.3
Trial 3: 60.0
Trial 4: 58.9
Trial 5: 59.2
Based on comparison, it can be observed that these experimental values are close to the correct value (59.2). Hence, they are said to be ACCURATE. Also, the experimental values are close to one another, hence, they are said to be PRECISE.
Therefore, the data set is both accurate and precise.
Answer:
The temperature is always lower.
Explanation:
The temperature is always lower at the end of the state as compared to beginning of the state. We can see in the given data, the temperature is higher at the beginning i. e. 140 degree Celsius but with the passage of time, the temperature of a state decreases constantly and the temperature at the end is lower i. e. 20 degree Celsius. So we can conclude that the temperature is always lower.