Answer:
h = 22.35 m
Explanation:
given,
initial speed of the rock,u = 0 m/s
length of the window,l = 2.7 m
time taken to cross the window,t = 0.129 s
Speed of the rock when it crosses the window
v = 20.93 m/s
height of the building above the window
using equation of motion
v² = u² + 2 g h
20.93² = 0² + 2 x 9.8 x h
h = 22.35 m
Hence, the height of the building above the top of window is equal to h = 22.35 m
Answer:
The force of the impact would be smaller
Explanation: Examples:
If the force is big then the time would be small (2500N of Force = 10 seconds)
If the force is small then the time would be big (250N of Force = 50 seconds)
Impulse/Collision -> [Ft] = [M (vf-vo)] <- Change in momentum
These anisotropies in the temperature map correspond to areas of varying density fluctuations in the early universe. Eventually, gravity would draw the high-density fluctuations into even denser and more pronounced ones.
A circuit which only has one path for current to follow
Answer:
d. lower than the original pitch and decreasing as he falls.
Explanation:
As per the Doppler effect when the pitch of the sound increases as the source approaches the observer and decreases as the source moves away. A classic example of this increasing pitch of ambulance siren as it approaches you and decreasing pitch of the siren as it goes away from you.
The same effect is applicable here as well. As the character keep falling, it is moving away from the observer so the pitch of his scream will keep on decreasing.