Answer:
a) Amplitude is 9.49 mm
b) ∅ = 0.43056 rad = 24.7°
c) phase angle = 2.24x - 300t + 0.43056 rad
Explanation:
Given that;
A1 = y1 = (4.17 mm) sin(2.24x - 300t)
A2 = y2 = (5.96 mm) sin(2.24x - 300t + 0.727rad)
now phase difference between y1 and y2 is;
Δ∅ = (2.24x - 300t + 0.727rad) - (2.24x - 300t) = 0.727 rad = 41.65°
a) the amplitude
Amplitude A = √( A1² + A2² + 2A1A2cosΔ∅)
we substitute
A = √( (4.17)² + (5.96)² + (2 × 4.17 × 5.96 × cos(41.65) )
A = √( 17.3889 + 35.5216 + ( 49.7064 × 0.7472 )
A = √(52.9105 + 37.1406 )
A = √90.0511
A = 9.49 mm
Therefore, Amplitude is 9.49 mm
b) the phase angle (relative to wave 1) of the resultant wave;
tan∅ = A2sinΔ∅ / ( A1 + A2cosΔ∅)
we substitute
tan∅ = 5.96sin41.65 / ( 4.17 + 5.96cos41.65)
tan∅ = 3.96088 / ( 4.17 + 4.4534)
tan∅ = 3.96088 / 8.6234
tan∅ = 0.4593
∅ = tan⁻¹ ( 0.4593 )
∅ = 0.43056 rad = 24.7°
c)
For the third wave, maximum amplitude. it should be in the direction of resultant of A1 and A2
so, phase angle in order to maximize the amplitude of the new resultant wave will be;
phase angle = 2.24x - 300t + 0.43056 rad