In my opinion it does. The more water the pot holds, the longer you need to wait for it to freeze. Since there is more water, some parts may not be completely frozen. An experiment you can try is to get an ice cube container and a pot. fill both of them and put them in the freezer for the same amount of time. When you take it out, the ice cubes should be frozen leaving the pot with cold water.
Answer:
The time taken by the projectile to hit the ground is 6.85 sec.
Explanation:
Given that,
Vertical height of cliff = 230 m
Distance = 300 m
Suppose, determine the time taken by the projectile to hit the ground.
We need to calculate the time
Using second equation of motion
Where, s = vertical height of cliff
u = initial vertical velocity
g = acceleration due to gravity
Put the value in the equation
Hence, The time taken by the projectile to hit the ground is 6.85 sec.
Answer:
Time period of the osculation will be 2.1371 sec
Explanation:
We have given mass m = (B+25)
And the spring is stretched by (8.5 A )
Here A = 13 and B = 427
So mass m = 427+25 = 452 gram = 0.452 kg
Spring stretched x= 8.5×13 = 110.5 cm
As there is additional streching of spring by 3 cm
So new x = 110.5+3 = 113.5 = 1.135 m
Now we know that force is given by F = mg
And we also know that F = Kx
So
Now we know that
So
Answer:
24,187.04 J ≈ 24,200 J
Explanation:
mass (m) = 544 kg
initial speed (u) = 6.75 m/s
final speed (v) = 15.2 m/s
change in height (Δh) = -14 m (negative sign is because there is a decrease in height )
acceleration due to gravity (g) = 9.8 m/s^{2}
How much work was done on the raft by non conservative forces?
work done = change in energy of the system = change in kinetic energy + change in potential energy
work done = () + (mgΔh)
work done = () + (544 x 9.8 x (-14))
work done = 50449.76 - 74,636.8
work done = 24,187.04 J ≈ 24,200 J