Answer:
Explanation:
Given that;
horizontal circle at a rate of 2.33 revolutions per second
the magnetic field of the Earth is 0.500 gauss
the baton is 60.1 cm in length.
the magnetic field is oriented at 14.42°
we wil get the area due to rotation of radius of baton is
The formula for the induced emf is
B is the magnetic field strength
substitute
The magnetic field of the earth is oriented at 14.42
we plug in the values in the equation above
so, the induce EMF will be
The EMF of the battery includes the force to to drive across its internal resistance. the total resistance:
R = internal resistance r + resistance connected rv
R = r + rv
Now find the current:
V 1= IR
I = R / V1
find the voltage at the battery terminal (which is net of internal resistance) using
V 2= IR
So the voltage at the terminal is:
V = V2 - V1
This is the potential difference vmeter measured by the voltmeter.
Answer:
Newton’s third law of motion states that every action has an equal and opposite reaction. This indicates that forces always act in pairs. Reaction forces are equal and opposite, but they are not balanced forces because they act on different objects so they don’t cancel each other out.
Newton’s first law states that if a body is at rest or moving at a constant speed in a straight line, it will remain at rest or keep moving in a straight line at constant speed unless it is acted upon by a force.
Newton’s second law is a quantitative description of the changes that a force can produce on the motion of a body. It states that the time rate of change of the momentum of a body is equal in both magnitude and direction to the force imposed on it.
Newton’s third law states that when two bodies interact, they apply forces to one another that are equal in magnitude and opposite in direction. The third law is also known as the law of action and reaction. This law is important in analyzing problems of static equilibrium, where all forces are balanced, but it also applies to bodies in uniform or accelerated motion.
-------------------------------------------------------------------------------------------------------------
The first law represented in the game would be the candy. If you blow it, it would move but then stop due to friction.
The second law would be represented by blowing the candy. Since the candy was light, it would be easier to blow but if it was heavier, it would be a lot harder.
The final law represented in the game would be if you decided to blow the candy with a ballon instead, the candy would move the opposite direction the ballon is moving.