The constant used for the absorption of heat by the sample in melting is . Thus, option A is correct.
The chemical reaction has been defined as the energy in which the energy has been released or absorbed for the breaking of bonds in the reactants and the formation of product.
<h3>Constant for energy absorbed</h3>
The energy has been absorbed in the melting of the copper sample. Thus, the sample has been converted from the solid to the liquid state.
The change in energy with the conversion in solid and liquid state has been termed as heat of fusion.
The energy has been absorbed by the system, thus it has been marked with the positive sign.
Therefore, has been the constant used for the absorption of heat by the sample in melting. Thus, option A is correct.
Learn more about melting sample, here:
brainly.com/question/8828503
Answer:
The answer is
<h2>59.6 g </h2>
Explanation:
The mass of a substance when given the density and volume can be found by using the formula
<h3>mass = Density × volume</h3>
From the question
Density of aluminum = 2.00 g/mL
volume = 29.8 mL
The mass is
mass = 2 × 29.8
We have the final answer as
<h3>59.6 g</h3>
Hope this helps you
44.8% oxygen, 21.5% silicon, and 22.8% magnesium. There's also iron, aluminum, calcium, sodium, and potassium. These elements are all bound together in the form of silicate rocks, all of which take the form of oxides.
Answer:
Newton's Second Law
Explanation:
Newton's second law basically states that the acceleration of a body which is produced by a net force is directly proportional to the magnitude of net force applied in the same direction.
This tells us that
F is directly proportional to a
⇒ F= ma
So we can also state from the above equation, that when we have more mass, we need more net force to accelerate it. Here, we are keeping the acceleration constant so we can surely say that force and mass varies directly.
Therefore, we have made good use of Newton's Second Law of motion to arrive at this conclusion.
Answer:
the final product is called a product
Explanation: