Answer:
Therefore the resistance of the conductor is 175Ω
Explanation:
Resistance:
- Resistance of a metallic conductor is directly proportional to its length(l).
- Resistance of a metallic conductor is inversely proportional to its cross section area(A).
The notation sign of resistance is R.
The unit of resistance is ohm (Ω).
Therefore,
and
ρ is the proportional constant.
It is also known as resistivity of that metal.
Given ρ=35×10⁻⁶Ω-m
l= 20 m
A= 4.0×10⁻⁶m²
=175Ω
Therefore the resistance of the conductor is 175Ω
The energy that transforms into kinetic energy is the Potential Energy. It happens that objects can store energy as a result of its position. Image for example a slingshot. When you stretch the slingshot, it stores energy, this energy would be the energy you used to stretch the slingshot, the material aborbs it and then release to throw the projectile.
Now, on earth and everywhere in the universe where you are close to an object with mass, it exists a force called gravity that attracts you towards that object. Every object that has mass exercises gravitational attration towards the other objects. It just happens that Earth is has so much mass that its gravitational pull is way stronger that the gravitational pull of another object on its surface. This means things will tend to be as close as earth as possible, and in order to move something away from earth, you will have to perform a force in the opposite direction to Earth and, therefore, consume energy. This energy will be store as potential energy, and when you drop the object, the potential energy will be the energy that will transform to kinetic energy.
The amount of diffraction depends on the wavelength of light, with shorter wavelengths being diffracted at a greater angle than longer ones (in effect, blue and violet<span> light are diffracted at a larger angle than is red light).
I hope my answer has come to your help. God bless and have a nice day ahead!
</span>
Refer to the figure shown below.
Let m₁ and m₂ e the two masses.
Let a = the acceleration.
Let T = tension over the frictionless pulley.
Write the equations of motion.
m₂g - T = m₂a (1)
T - m₁g = m₁a (2)
Add equations (1) and (2).
m₂g - T + T - m₁g = (m₁ + m₂)a
(m₂ - m₁)g = (m₁ + m₂)a
Divide through by m₁.
(m₂/m₁ - 1)g = (1 + m₂/m₁)a
Define r = m₂/m₁ as the ratio of the two masses. Then
(r - 1)g = (1 +r)a
r(g-a) = a + g
r = (g - a)/(g + a)
With = 2 ft/s from rest, the acceleration is
a = 2/32.2 = 0.062 ft/s²
Therefore
r = (32.2 - 0.062)/(32.2 + 0.062) = 0.9962
Answer:
The ratio of masses is 0.9962 (heavier mass divided by the lighter mass).
There are three types: divergent, convergent, and transform boundaries. I hope this helps.