Use the Inverse square law, Intensity (I) of a light is inversely proportional to the square of the distance(d).
I=1/(d*d)
Let Intensity for lamp 1 is L1 distance be D1 so on, L2 D2 for Intensity for lamp 2 and its distance.
L1/L2=(D2*D2)/(D1*D1)
L1/15=(200*200)/(400*400)
L1=15*0.25
L1=3.75 <span>candela</span>
Answer:
The kinetic energy of a body is the energy that it possessed due to its motion. Kinetic energy can be defined as the work needed to accelerate an object of a given mass from rest to its stated velocity. Kinetic energy depends upon the velocity and the mass of the body.
The spring constant is 181.0 N/m
Explanation:
We can solve the problem by applying the law of conservation of energy. In fact, the elastic potential energy initially stored in the compressed spring is completely converted into gravitational potential energy of the dart when the dart is at its maximum height. Therefore, we can write:
where the term on the left represents the elastic potential energy of the spring while the term on the right is the gravitational potential energy of the dart at maximum height, and where
k is the spring constant of the spring
x = 2.08 cm = 0.0208 m is the compression of the spring
m = 12.3 g = 0.00123 kg is the mass of the dart
is the acceleration due to gravity
h = 3.25 m is the maximum height of the dart
Solving for k, we find:
Learn more about potential energy:
brainly.com/question/1198647
brainly.com/question/10770261
#LearnwithBrainly
Answer:
553.1m
Explanation:
When an object moves at constant velocity we can express this movement like V=x/t, where V is the velocity, x is the displacement and t is the time spent on it.
In that way, the expression x=V.t give us the displacement from t=0s until t=51s, but we have to sum the initial distance from the point A.
x=242m +V.t = 242m + (6.1m/s x 51s) = 553.1m
Answer:
Explanation:
The condition for translation equilibrium is that is that the net force acting on the body must be zero.
The sum all the external forces acting on the body in horizontal as well as vertical direction must be zero.
∑Fₓ=0 and ∑Fy=0
now if the above two condition are satisfied the rigid body is said to be in translational equilibrium.
God bless... hope this help to clear your doubt.