Answer:
Last option.
Step-by-step explanation:
The consecutive exterior angle theorem states that the exterior angles are supplementary if two lines are cut by a transversal.
m∠1 + m∠7 = 180
m∠2 + m∠8 = 180
Answer:
x^2+8x+<u>1</u><u>6</u><u>=</u><u>(</u><u>x-4</u><u>)</u><u>^</u><u>2</u>
<em><u>EXPLANATION</u></em><em><u>:</u></em>
<u>(</u><u>a</u><u>+</u><u>b</u><u>)</u><u>^</u><u>2</u><u>=</u><u>a2</u><u>+</u><u>2</u><u>.</u><u>a</u><u>.</u><u>b</u><u>+</u><u>b2</u>
<u>we</u><u> </u><u>have</u><u> </u><u>to</u><u> </u><u>break</u><u> </u><u>the</u><u> </u><u>middle</u><u> </u><u>term</u><u> </u><u>i</u><u>n</u><u> </u><u>2</u><u>a</u><u>b</u><u> </u><u>here</u><u> </u><u>a</u><u> </u><u>is</u><u> </u><u>x</u><u> </u><u>then</u><u> </u><u>2</u><u>x</u><u>b</u><u>=</u><u>8</u><u>x</u><u>,</u><u> </u><u>=</u><u>></u><u> </u><u>b</u><u>=</u><u>4</u><u>,</u><u> </u><u>but</u><u> </u><u>value</u><u> </u><u>of</u><u> </u><u>a</u><u> </u><u>and</u><u> </u><u>b</u><u> </u><u>to</u><u> </u><u>get</u><u> </u><u>the</u><u> </u><u>req</u><u>uired</u><u> </u><u>equation</u><u>!</u>
OK for number 3is 70because you add the number that they give you and then subtract 36 106 and you get your answer
Perpendicular lines refers to a pair of straight lines that intercept each other. The slopes of this lines are opposite reciprocal, meaning that it's multiplication is -1.
On this case they give you the equation of a line and a point, and is asked to find the equation of a line that is perpendicular to the given one, and that passes through this point.
-2x+3y=-6 Add 2x in both sides
3y=2x-6 Divide by 3 in both sides to isolate y
y=2/3x-6/3
The slope of the given line is 2/3, which means that the slope of a line perpendicular to this one, needs to be -3/2. Now you need to find the value of b or the y-intercept by substituting the given point into the formula y=mx+b, where letter m represents the slope.
y=mx+b Substitute the given point and the previous slope found
-2=(-3/2)(6)+b Combine like terms
-2=-9+b Add 9 in both sides to isolate b
7=b
The equation that represents the line perpendicular to -2x+3y=-6 and that passes through the point (6,-2), is y=-3/2x+7.