Answer:
14.4kJ
Explanation:
Work = Force x distance
W × h = mgh
Given that,
mass m, = 59.5kg
acceleration due to gravity = 9.8m/s^2
height ,h = 16.2cm
convert to m is 0.162m
How much work = m x g x h
height is 0.162 x 152 steps
h = 24.624m
work = 59.5 x 9.8 x 24.624
= 14,358.25Joule
= 14.4kJ
Answer:
the ratio of the smallest division of main scale to the number of divisions of the vernier scale.
Explanation:
difference between the value of one main scale division and one vernier scale division
Answer:
Answer:196 Joules
Explanation:
Hello
Note: I think the text in parentheses corresponds to another exercise, or this is incomplete, I will solve it with the first part of the problem
the work is the product of a force applied to a body and the displacement of the body in the direction of this force
assuming that the force goes in the same direction of the displacement, that is upwards
W=F*D (work, force,displacement)
the force necessary to move the object will be
Answer:196 Joules
I hope it helps
Answer:
(A) FM Radio had a somewhat shorter ranger than AM radio, but better sound quality.
Explanation:
FM Radio was invented in 1933 by Edwin Armstrong who was an American engineer. FM stands for frequency modulation and AM stands for Amplitude Modulation.
FM is used for most broadcasts of music and FM radio stations use a very high-frequency range of radio frequencies.
In FM Radio, the sound is transmitted through changes in frequency. Both FM and AM radio signals experience frequent change in amplitude, they are far less noticeable on FM.
When switching between stations, FM antenna is alternating between different frequencies, and not amplitudes and this produces a much clearer sound and allows for smoother transitions with little to no audible static.
FM signals can be interfered by barriers and this could affect the signal strength. FM Radio signals are more clearer in a mountainous area that has no barrier.
AM radio was able to carry signals farther than AM radio.
To solve the problem, it is necessary to apply the concepts related to the kinematic equations of the description of angular movement.
The angular velocity can be described as
Where,
Final Angular Velocity
Initial Angular velocity
Angular acceleration
t = time
The relation between the tangential acceleration is given as,
where,
r = radius.
PART A ) Using our values and replacing at the previous equation we have that
Replacing the previous equation with our values we have,
The tangential velocity then would be,
Part B) To find the displacement as a function of angular velocity and angular acceleration regardless of time, we would use the equation
Replacing with our values and re-arrange to find
That is equal in revolution to
The linear displacement of the system is,