Answer:
Compound X has a molar mass of 316.25 g*mol^-1 and the following composition:
element & mass %
phosphorus & 39.18%
sulfur & 60.82%
Write the molecular formula of X.
Explanation:
The given molecule of phosphorus and sulfur has molar mass --- 316.25 g.
Empirical formula calculation:
element: phosphorus sulfur
co9mposition: 39.185% 60.82%
divide with
atomic mass: 39.185/31.0 g/mol 60.82/32.0g/mol
=1.26mol 1.90mol
smallest mole ratio: 1.26mol/1.26mol =1 1.90mol/1.26 mol =1.50
multiply with 2: 2 3
Hence, the empirical formula is:
P2S3.
Mass of empirical formula is:
158.0g/mol
Given, molecule has molar mass --- 316.25 g/mol
Hence, the ratio is:
316.25g/mol/158.0 =2
Hence, the molecular formula of the compound is :
2 x (P2S3)
=
Answer:
-1
Explanation:
The relation between Kp and Kc is given below:
Where,
Kp is the pressure equilibrium constant
Kc is the molar equilibrium constant
R is gas constant
, 0.082057 L atm.mol⁻¹K⁻¹
T is the temperature in Kelvins
Δn = (No. of moles of gaseous products)-(No. of moles of gaseous reactants)
For the first equilibrium reaction:
<u>Δn = (No. of moles of gaseous products)-(No. of moles of gaseous reactants) = (2+1)-(2+2) = -1 </u>
<u></u>
Answer:
They are both listed under group 11 on the periodic table and both are highly conductive of electricity
Explanation:
HOPE THIS HELPS ^^
The reason why Br has a greater magnitude of electron affinity than that of I is that there is a greater attraction between an added electron and the nucleus in Br than in I.
In the periodic table, there are trends that increase down the group and across the period. Electron affinity is a trend that increases across the period but decreases down the group.
Recall that the ability of an atom to accept an electron depends on the size of the atom. The smaller the atom, the greater the attraction between an added electron and the nucleus.
Since Br is smaller than I, there is a greater attraction between an added electron and the nucleus in Br than in I which explains why Br has a greater magnitude of electron affinity than I.
Learn more: brainly.com/question/17696329
There are three other structural isomers of 1-butanol: 2-butanol (sec-butyl alcohol), 2-methyl-1-propanol (isobutyl alcohol), and 2-methyl-2-propanol (tert-butyl alcohol). 2-Butanol, or sec-butanol, or sec-butyl alcohol, or s-butyl alcohol, is a four-carbon chain, with the OH group on the second carbon.
Chemicals of this type: Ethanol
Hope this helps