Answer:
Water
Explanation:
Solid potassium hydrogen tartrates (KHT) is soluble in water. This is especially at room temperature.
The solvent for KHT is water.
C
Decomposition is of this form: A becomes B+C ... so after the reaction, the element A DECOMPOSES into two smaller elements, B and C.
Synthesis is the opposite: B+C becomes A AFTER THE REACTION.
Hope that helps :))
Answer:
the Molar heat of Combustion of diphenylacetylene =
Explanation:
Given that:
mass of diphenylacetylene = 0.5297 g
Molar Mass of diphenylacetylene = 178.21 g/mol
Then number of moles of diphenylacetylene =
=
= 0.002972 mol
By applying the law of calorimeter;
Heat liberated by 0.002972 mole of diphenylacetylene = Heat absorbed by + Heat absorbed by the calorimeter
Heat liberated by 0.002972 mole of diphenylacetylene = msΔT + cΔT
= 1369 g × 4.184 J g⁻¹°C⁻¹ × (26.05 - 22.95)°C + 916.9 J/°C (26.05 - 22.95)°C
= 17756.48 J + 2842.39 J
= 20598.87 J
Heat liberated by 0.002972 mole of diphenylacetylene = 20598.87 J
Heat liberated by 1 mole of diphenylacetylene will be =
= 6930979.139 J/mol
= 6930.98 kJ/mol
Since heat is liberated ; Then, the Molar heat of Combustion of diphenylacetylene =
0.3268 moles of PC15 can be produced from 58.0 g of Cl₂ (and excess
P4)
<h3>How to calculate moles?</h3>
The balanced chemical equation is
The mass of clorine is m() = 58.0 g
The amount of clorine is n() = m()/M() = 58/70.906 = 0.817 mol
The stoichiometric reaction,shows that
10 moles of yield 4 moles of ;
0.817 of yield x moles of
n() = 4*0.817/10 = 0.3268 mol
To know more about stoichiometric reaction, refer:
brainly.com/question/14935523
#SPJ9
I believe the answer is C