Answer:
The maximum speed of sonic at the bottom of the hill is equal to 19.85m/s and the spring constant of the spring is equal to (497.4xmass of sonic) N/m
Energy approach has been used to sole the problem.
The points of interest for the analysis of the problem are point 1 the top of the hill and point 2 the bottom of the hill just before hitting the spring
The maximum velocity of sonic is independent of the his mass or the geometry. It is only depends on the vertical distance involved
Explanation:
The step by step solution to the problem can be found in the attachment below. The principle of energy conservation has been applied to solve the problem. This means that if energy disappears in one form it will appear in another.
As in this problem, the potential and kinetic energy at the top of the hill were converted to only kinetic energy at the bottom of the hill. This kinetic energy too got converted into elastic potential energy .
x = compression of the spring = 0.89
The potential energy of an object is defined by the equation: PE = mgh, where m = the mass of the object, g = the gravitational acceleration and h = the object's height above the ground.
Answer:
14009. 72 kgms^-1
Explanation:
Momentum is the product of an objects mass and velocity
Answer:
Rotating the loop until it is perpendicular to the field
Explanation:
Current is induced in a conductor when there is a change in magnetic flux.
The strength of the induced current in a wire loop moving through a magnetic field can be increased or decreased by the following methods:
By increasing the strength of the magnetic field there will be increased in the induced current. If the strength of the magnetic field is decreased then there is a decrease in induced current.
By increasing the speed of the wire there will be increased in the induced current. When the speed of the wire is decreased then there is a decrease in induced current.
By increasing the number of turns of the coil the strength of the induced current can be increased. when there is less number of turns in coils then there is a decrease in induced current.
Rotating the loop until it is perpendicular to the field will not increase the current induced in a wire loop moving through a magnetic field.
Therefore, the option is (c) is correct.