Answer:
F = 4.147 × 10^23
v = 1.31 × 10^4
Explanation:
Given the following :
mass of Jupiter (m1) = 1.9 × 10^27
Mass of sun (m2) = 1.99 × 10^30
Distance between sun and jupiter (r) = 7.8 × 10^11m
Gravitational force (F) :
(Gm1m2) / r^2
Where ; G = 6.673×10^-11 ( Gravitational constant)
F = [(6.673×10^-11) × (1.9 × 10^27) × (1.99 × 10^30)] / (7.8 × 10^11)^2
F = [25.231 × 10^(-11+27+30)] / (60.84 × 10^22)
F = (25.231 × 10^46) / (60.84 × 10^22)
F = 3.235 × 10^(46 - 22)
F = 0.4147 × 10^24
F = 4.147 × 10^23
Speed of Jupiter (v) :
v = √(Fr) / m1
v = √[(4.147 × 10^23) × (7.8 × 10^11) / (1.9 × 10^27)
v = √32.3466 × 10^(23+11) / 1.9 × 10^27
v = √32.3466× 10^34 / 1.9 × 10^27
v = √17. 023 × 10^34-27
v = √17.023 × 10^7
v = 13047.221
v = 1.31 × 10^4
Answer:
The value we are given in the question is 1.24 * 10^7. This form of writing number is called scientific notation. The standard notation is the normal, regular way of writing numbers. Scientific notation and standard notations are interchangeable.
1.24 * 10^7 written in standard notation will be = 1.24 * 10000000 = 12400000.
Thus, the mass of the meteoroid was 12400000 kg.
Explanation:
Answer:
a) 5.63 atm
Explanation:
We can use combined gas law
<em>The combined gas law</em> combines the three gas laws:
- Boyle's Law, (P₁V₁ =P₂V₂)
- Charles' Law (V₁/T₁ =V₂/T₂)
- Gay-Lussac's Law. (P₁/T₁ =P₂/T₂)
It states that the ratio of the product of pressure and volume and the absolute temperature of a gas is equal to a constant.
P₁V₁/T₁ =P₂V₂/T₂
where P = Pressure, T = Absolute temperature, V = Volume occupied
The volume of the system remains constant,
So, P₁/T₁ =P₂/T₂
a)