Hello!
To find the amount of energy need to raise the temperature of 125 grams of water from 25.0° C to 35.0° C, we will need to use the formula: q = mcΔt.
In this formula, q is the heat absorbed, m is the mass, c is the specific heat, and Δt is the change in temperature, which is found by final temperature minus the initial temperature.
Firstly, we can find the change in temperature. We are given the initial temperature, which is 25.0° C and the final temperature, which is 35.0° C. It is found by subtract the final temperature from the initial temperature.
35.0° C - 25.0° C = 10.0° C
We are also given the specific heat and the grams of water. With that, we can substitute the given values into the equation and multiply.
q = 125 g × 4.184 J/g °C × 10.0° C
q = 523 J/°C × 10.0° C
q = 5230 J
Therefore, it will take 5230 joules (J) to raise the temperature of the water.
I believe it was John Newlands.
Hope that helped
Answer:
an electron is part of the 3 things that are in an atom, it has a negative charge
<u>Answer:</u> The percent composition of hydrogen in the sample is 15.22 %
<u>Explanation:</u>
We are given:
Mass of hydrogen = 7 grams
Mass of nitrogen = 32 grams
Mass of carbon = 7 grams
Total mass of the sample = 7 + 32 + 7 = 46 grams
To calculate the percentage composition of hydrogen in sample, we use the equation:
Mass of sample = 46 g
Mass of hydrogen = 7 g
Putting values in above equation, we get:
Hence, the percent composition of hydrogen in the sample is 15.22 %
Answer:
D
Explanation:
Because I carbon atom and 1 hydrogen atom plus 2
Oxygen atoms are needed