Answer:
it can occur in all waves because all wave have a frequency
To determine the distance of the light that has traveled given the time it takes to travel that distance, we need a relation that would relate time with distance. In any case, it would be the speed of the motion or specifically the speed of light that is travelling which is given as 3x10^8 meters per second. So, we simply multiply the time to the speed. Before doing so, we need to remember that the units should be homogeneous. We do as follows:
distance = 3x10^8 m/s ( 8.3 min ) ( 60 s / 1 min ) = 1.494x10^11 m
Since we are asked for the distance to be in kilometers, we convert
distance = 1.494x10^11 m ( 1 km / 1000 m) = 149400000 km
Explanation:
It varies with altitude, but at sea level, it's 9.8 m/s².
Explanation:
36-4/4= 9 m/squared. meter per squared.
acceleration unit is meter per second Square.equation is velocity by time.for average final(36) minus initial(4)
Niobium wire with a 2.60 mm diameter has a maximum current capacity of 500 A while still remaining superconducting.
<h3>Describe the present.</h3>
Current is the rate at which charge passes from one point on a circuit to another. In a circuit, a significant current flows when several coulombs or charge pass over the cross section of a wire. When the charge carriers are firmly packed inside the wire, high currents can be generated at low speeds.
<h3>What do current and electron actually mean?</h3>
Electron movement is referred to as electron current. The positive terminal receives electrons that are released by the negative terminal. Traditional current, usually referred to as just current, exhibits behavior consistent with positive charge carriers being the source of current flow. Regular current is received at the positive end and then flows to a negative terminal.
To know more about current visit:
brainly.com/question/15141911
#SPJ4