Answer:
K = -½U
Explanation:
From Newton's law of gravitation, the formula for gravitational potential energy is;
U = -GMm/R
Where,
G is gravitational constant
M and m are the two masses exerting the forces
R is the distance between the two objects
Now, in the question, we are given that kinetic energy is;
K = GMm/2R
Re-rranging, we have;
K = ½(GMm/R)
Comparing the equation of kinetic energy to that of potential energy, we can derive that gravitational kinetic energy can be expressed in terms of potential energy as;
K = -½U
when approaching the front of an idling jet engine, the hazard area extends forward of the engine approximately 25 feet.
<h3>What impact, if any, would jet fuel and aviation gasoline have on a turbine engine?</h3>
Tetraethyl lead, which is present in gasoline, deposits itself on the turbine blades. Because jet fuel has a higher viscosity than aviation gasoline, it may retain impurities with greater ease.
Once the gasoline charge has been cleared, start the engine manually or with an electric starter while cutting the ignition and using the maximum throttle.
On the final approach, the aeroplane needs to be re-trimmed to account for the altered aerodynamic forces. A substantial nose-down tendency results from the airflow producing less lift on the wings and less downward force on the horizontal stabiliser due to the reduced power and slower velocity.
Learn more about turbine engine refer
brainly.com/question/807662
#SPJ4
Fun fhjzsh going chichi. Gok
When you square the "year" of each planet and divide it by the cube of its distance, or axis from the sun, the number would be the same for all the planets