I believe the best example of Newton's First Law of motion would be the example or illustration with the basketball player. An object will move in a straight line or a given direction at a constant speed unless or until another force acts upon the object, causing a change in speed and or direction.
Answer:
b) True. the force of air drag on him is equal to his weight.
Explanation:
Let us propose the solution of the problem in order to analyze the given statements.
The problem must be solved with Newton's second law.
When he jumps off the plane
fr - w = ma
Where the friction force has some form of type.
fr = G v + H v²
Let's replace
(G v + H v²) - mg = m dv / dt
We can see that the friction force increases as the speed increases
At the equilibrium point
fr - w = 0
fr = mg
(G v + H v2) = mg
For low speeds the quadratic depended is not important, so we can reduce the equation to
G v = mg
v = mg / G
This is the terminal speed.
Now let's analyze the claims
a) False is g between the friction force constant
b) True.
c) False. It is equal to the weight
d) False. In the terminal speed the acceleration is zero
e) False. The friction force is equal to the weight
Answer with Explanation:
We are given that
Magnetic field,B=
Length of wire,l=15 m
Current,I=19 A
a.We have to find the magnitude of magnetic force and direction of magnetic force.
Magnetic force,F=
Using the formula
Direction=
15 degree above the horizontal in the northward direction.
Generally, rings form from moons, asteroids, or comets that have disintegrated due to a collision or because they got too close to their planet (Roche Limit). ... Most of the debris, however, will not have enough energy to overcome the planet's gravity and will remain in orbit around the planet.