Answer:
(Sin A + Cos A)/Sin A. Cos A
Step-by-step explanation:
As we know
Sec A = 1/Cos A
and Cosec A = 1/Sin A
Given Equation
Sec A + Cosec A
Substituting the given values, we get -
1/cos A + 1/Sin A
(Sin A + Cos A)/Sin A. Cos A
1) 7000+300+10+3
2) 900,000+90,000+400+40+6
3) 600+80+2
4)30,000+7000+900+10+1
5)3,000,000+900,000+40,000+1,000+400+70+7
6)8000+400+70+4
7)700+70+2
8)30,000+7000+200+80+2
9)700,000+30,000+5,000+800+10+1
10)40,000+6000+400+40+9
11)5000+8000+70+2
12)5,000,000+700,000+50,000+8,000+900+40+5
13)5,000,000+900,000+90,000+8,000+800+90+0
14)300+70+7
15)300,000+20,000+3,000+200+40+8
Answer:
Step-by-step explanation:
Divide: 3/13 = 3 ÷ 13
3/13 = 0.230769230769...
B) is your answer
~
Answer:
f(x + h) = 3x³ + x² + 9h²x + 3h³ + h² + 9hx² + 2hx
General Formulas and Concepts:
- Order of Operations: BPEMDAS
- Distributive Property
- Expand by FOIL (First Outside Inside Last)
- Combining like terms
Step-by-step explanation:
<u>Step 1: Define function</u>
f(x) = x² + 3x³
f(x + h) is x = x + h
<u>Step 2: Simplify</u>
- Substitute: f(x + h) = (x + h)² + 3(x + h)³
- Expand by FOILing: f(x + h) = (x² + 2hx + h²) + 3(x + h)³
- Rewrite: f(x + h) = (x² + 2hx + h²) + 3(x + h)²(x + h)
- Expand by FOILing: f(x + h) = (x²+2hx+h²) + 3(x² + 2hx + h²)(x+h)
- Distribute/Expand: f(x + h) = (x²+2hx+h²) + 3(x³+3hx²+3h²x+h³)
- Distribute 3: f(x + h) = (x²+2hx+h²)+(3x³+9hx²+9h²x+3h³)
- Combine like terms: f(x + h) = 3x³+x²+9h²x+3h³+h²+9hx²+2hx
Answer:
D. 47
Step-by-step explanation: