Answer:
See explanation
Explanation:
The degradation of the drug is a first order process;
Hence;
ln[A] = ln[A]o - kt
Where;
ln[A] = final concentration of the drug
ln[A]o= initial concentration of the drug = 5 gm/100
k= degradation constant = 0.05 day-1
t= time taken
When [A] =[ A]o - 0.5[A]o = 0.5[A]o
ln2.5 = ln5 - 0.05t
ln2.5- ln5 = - 0.05t
t= ln2.5- ln5/-0.05
t= 0.9162 - 1.6094/-0.05
t= 14 days
b) when [A] = [A]o - 0.9[A]o = 0.1[A]o
ln0.5 = ln5 -0.05t
t= ln0.5 - ln5/0.05
t= -0.693 - 1.6094/-0.05
t= 46 days
Answer:
Light refracts when its speed changes as it enters a new medium.
Explanation:
Bending of light wave while it entering a medium with different speed is called refraction of light. Light passing from a faster medium to the slower medium bends the light rays toward the normal to boundary between two media. The amount of the bending of light depends on refractive index of the two media which is described by the Snell's Law. The angle of incidence is not equal to angle of refraction. Rainbow is caused but this refraction phenomena. Also Refraction is used in magnifying glasses, prism and lenses
Answer:
Magnitude of induced emf is 0.00635 V
Explanation:
Radius of circular loop r = 45 mm = 0.045 m
Area of circular loop
Magnetic field is increases from 250 mT to 350 mT
Therefore change in magnetic field
Emf induced is given by
Magnitude of induced emf is equal to 0.00635 V
Answer:
t_total = 6.99 s
Explanation:
It asks us how long it takes to hear the sound, for this we must look for the time (t₁) it takes for the sound to reach the microphone, the time it takes for the video signal (t₂) to reach the television and the time (₃) it takes for the TV sound to reach us, so the total delay time is
t_total = t₁ + t₂ + t₂
we look for t1, it indicates that the distance x = 22m
v = x / t
t = x / v
t₁ = 22/343
t₁ = 6.41 10-2 s
time t₂
t₂ = 4500 103/3 108
t₂ = 1.5 10-5 s
time t₃
t₃ = 2/343
t₃ = 5.83 10⁻³
Total time is
t_total = t₁ + t₂ + t₃
t_total = 6.41 10⁻² + 1.5 10⁻⁵ + 0.583 10⁻²
t_total = 6.99 s
Answer: Although low frequency sound travels further than high-frequency sound, calls at higher frequencies give the bats more detailed information--such as size, range, position, speed and direction of a prey's flight. Thus, these sounds are used more often.
Explanation: