Answer:
the frequency clock would be 1262.85 Hz
Explanation:
Given data;
height of building h = 25 m
from the third equation of motion;
v² = u² + 2as
Since the Alarm clock falls with an acceleration equal to the acceleration due to gravity; a = g = 9.81 m/s²
initial velocity u = 0
so we substitute our values into the kinematic equation
v² = (0)² + 2 × 9.81 × 25
v² = 490.5
v = √490.5
v = 22.1472 m/s
Now, since the alarm clock is moving both I am stationary;
my velocity will be zero.
so Frequency of the alarm clock will be;
f' = [ (v - ) / ( v + ) ] × f
we know that; speed of sound is 343 m/s, so v = 343 m/s, is 22.1472 m/s, f is 1350 Hz, is 0 m/s
so we substitute the values into the equation
f' = [ (343 - 22.142 ) / ( 343 + 0 ) ] × 1350
f' = [ 320.858 / 343 ] × 1350
f' = 0.935446 × 1350
f' = 1262.85 Hz
Therefore, the frequency clock would be 1262.85 Hz