Answer:
If the temperature increases the molecular movement as well, and if it increases the same it will happen with the molecular movement.
Pressure, volume and temperature are three factors that are closely related since they increase the temperature, the pressure usually decreases due to the dispersion of the molecules that can be generated, so the volume also increases.
If the temperature drops, the material becomes denser, its molecules do not collide with each other, their volume and pressure increases.
Explanation:
The pressure is related to the molecular density and the movement that these molecules have.
The movement is regulated by temperature, since if it increases, the friction and collision of the molecules also.
On the other hand, the higher the volume, the less pressure there will be on the molecules, since they are more dispersed among themselves.
(in the opposite case that the volume decreases, the pressure increases)
Answer:
For n=3 and l=1=p
It is 3p-orbital.
Magnetic quantum number m
l
have values from -l to +l and total of 2l+1 values.
Forl=1, m
l
values are:
m
l
=−1,0,1 for l=1; total m
l
values =3= Number of orbitals
Each orbital can occupy maximum of two electron
Number of electrons =2×3=6
Thus 6 electrons will show same quantum number values of n=3 and l=1.
Number of elements with last electron in 3p orbitals = 6
The molecular formula :
C₆H₁₄O₃PF
<h3>Further explanation</h3>
Given
39.10% carbon, 7.67% hydrogen, 26.11% oxygen, 16.82% phosphorus, and 10.30% fluorine.
Required
The molecular formula
Solution
mol ratio :
C = 39.1 : 12 = 3.258
H = 7.67 : 1 = 7.67
O = 26.11 : 16 = 1.632
P = 16.82 : 31 = 0.543
F = 10.3 : 19 = 0.542
Divide by 0.542
C = 6
H : 14
O = 3
P = 1
F = 1
The empirical formula :
C₆H₁₄O₃PF
(The empirical formula)n = the molecular formula
(C₆H₁₄O₃PF)=184.1
(6.12+14.1+3.16+31+19)n=184.1
(184)n=184.1
n = 1