Heat rises, and it is warmer at the equator, so I think warm air would rise at the equator and move towards the cooler poles.
The speed is 0.956 m / s.
<u>Explanation</u>:
The kinetic energy is equal to the product of half of an object's mass, and the square of the velocity.
K.E = 1/2 m
where K.E represents the kinetic energy,
m represents the mass,
v represents the velocity.
K.E = 1/2 m
1.10 10^42 = 1/2 3.26 10^31
= (1.10 10^42 2) / (3.26 10^31)
v = 0.956 m / s.
Answer:
hi apner how is ur going for the weekend on your way home
Explanation:
hi there is that something you could help me
Answer:
E = 0 r <R₁
Explanation:
If we use Gauss's law
Ф = ∫ E. dA = / ε₀
in this case the charge is distributed throughout the spherical shell and as we are asked for the field for a radius smaller than the radius of the spherical shell, therefore, THERE ARE NO CHARGES INSIDE this surface.
Consequently by Gauss's law the electric field is ZERO
E = 0 r <R₁
Answer: 56.72 ft/s
Explanation:
Ok, initially we only have potential energy, that is equal to:
U =m*g*h
where g is the gravitational acceleration, m the mass and h the height.
h = 50ft and g = 32.17 ft/s^2
when the watermelon is near the ground, all the potential energy is transformed into kinetic energy, and the kinetic energy can be written as:
K = (1/2)*m*v^2
where v is the velocity.
Then we have:
K = U
m*g*h = (m/2)*v^2
we solve it for v.
v = √(2g*h) = √(2*32.17*50) ft/s = 56.72 ft/s