Answer:
11/12, 5/7, 1,8, 1/4, 1/2
Step-by-step explanation:
Answer:
Point slope is ( Y+4) = 1/2(x+3)
Slope intercept is Y = 1/2(x) -5/2
Step-by-step explanation:
For the point slope form.
Given the point as (-3,-4)
And the gradient m = 1/2
Point slope form is
(Y - y1) = m(x-x1)
So
X1 = -3
Y1 = -4
(Y - y1) = m(x-x1)
(Y - (-4)) = 1/2(x -(-3))
( Y+4) = 1/2(x+3)
For the slopes intercept form
Y = mx + c
We can continue from where the point slope form stopped.
( Y+4) = 1/2(x+3)
2(y+4)= x+3
2y + 8 = x+3
2y = x+3-8
2y = x-5
Y = x/2 - 5/2
Y = 1/2(x) -5/2
Where -5/2 = c
1/2 = m
Step-by-step explanation: This simple confidence interval calculator uses a Z statistic and sample mean (M) to generate an interval estimate of a population mean (μ).
Note: You should only use this calculator if (a) your sample size is 30 or greater; and/or (b) you know the population standard deviation (σ), and use this instead of your sample's standard deviation (an unusual situation). If your data does not meet these requirements, consider using the t statistic to generate a confidence interval.
where:
M = sample mean
Z = Z statistic determined by confidence level
sM = standard error = √(s2/n)
As you can see, to perform this calculation you need to know your sample mean, the number of items in your sample, and your sample's standard deviation (or population's standard deviation if your sample size is smaller than 30). (If you need to calculate mean and standard deviation from a set of raw scores, you can do so using our descriptive statistics tools.)
Answer:
They used 16.4 centimeters
Answer:
The area of the sector is 17/2 π
Step-by-step explanation:
pi = π
To solve this problem we first have to find the fraction that corresponds to this angle of the total, for this we must divide the angle that they give us by 2π radians, since that is the angle of a circle
(17π/9 rad) / (2π rad) = 17/18
Now we multiply the area of the circle by this fraction and we will obtain the area of the sector that we want
9π * 17/18 = 17/2 π
The area of the sector is 17/2 π