Velocity is defined by rate of change in the position
which we can also write as
while acceleration is defined as rate of change in velocity
so acceleration and velocity both are rate of change in position and rate of change in velocity with respect to time respectively
out of all above statement the correct answer must be
<u>Acceleration equals change in velocity divided by time. </u>
Answer:
a) 24.4 Ω
b) 4.92 A
c) 495.9 W
d)
c. It will be larger. The resistance will be smaller so the current drawn will increase, increasing the power.
Explanation:
b)
The formula for power is:
P = IV
where,
P = Power of heater = 590 W
V = Voltage it takes = 120 V
I = Current Drawn = ?
Therefore,
590 W = (I)(120 V)
I = 590 W/120 V
<u>I = 4.92 A</u>
<u></u>
a)
From Ohm's Law:
V = IR
R = V/I
Therefore,
R = 120 V/4.92 A
<u>R = 24.4 Ω</u>
<u></u>
c)
For constant resistance and 110 V the power becomes:
P = V²/R
Therefore,
P = (110 V)²/24.4 Ω
<u>P = 495.9 W</u>
<u></u>
d)
If the resistance decreases, it will increase the current according to Ohm's Law. As a result of increase in current the power shall increase according to formula (P = VI). Therefore, correct option is:
<u>c. It will be larger. The resistance will be smaller so the current drawn will increase, increasing the power.</u>
Answer:
Part a)
Part b)
So this speed is independent of the mass of the rider
Explanation:
Part a)
By force equation on the rider at the position of the hump we can say
now we will have
now we have
Part b)
At the top of the loop if the minimum speed is required so that it remains in contact so we will have
at minimum speed
So this speed is independent of the mass of the rider
Answer:
F=1.14N j
Explanation:
The magnitude of the magnetic force over a charge in a constant magnetic field is given by the formula:
(|)
In this case v and B vectors are perpendicular between them. Furthermore the direction of the magnetic force is:
-i X k = +j
Finally, by replacing in (1) we obtain:
hope this helps!
Answer:
áp dụng công thức í, mình thấy câu này có rắc rối gì đâu