Answer:
0.36427
Step-by-step explanation:
Mean = λ = 18 messages per hour
P(X = x) = (e^-λ)(λ⁻ˣ)/x!
P(X ≤ x) = Σ (e^-λ)(λ⁻ˣ)/x! (Summation From 0 to x)
But the probability required is that the messages thay come in an hour is between 15 and 20, that is, P(15 < X < 20)
P(15 < X < 20) = P(X < 20) - P(X ≤ 15)
These probabilities will be evaluated using a cumulative frequency calculator.
P(X < 20) = 0.65092
P(X ≤ 15) = poissoncdf(18, 15) = 0.28665
P(15 < X < 20) = P(X < 20) - P(X ≤ 15) = 0.65092 - 0.28665 = 0.36427.
You can use the Poisson distribution calculator here
https://stattrek.com/online-calculator/poisson.aspx
The ball will be at height 19 feet first at 0.7 sec and then at 1.42 sec.
<u>Explanation:</u>
We need to find the time at which the ball will be at height 19 feet.
Equation:
h = 3 + 34t - 16t²
19 = 3 + 34t - 16t²
16 = -16t² + 34t
-16t² + 34t - 16 = 0
On solving the equation, we get
t1 = 0.7 s and t2 = 1.42s
Therefore, the ball will be at height 19 feet first at 0.7 sec and then at 1.42 sec.
Answer:
P = 6200 / (1 + 5.2e^(0.0013t))
increases the fastest
Step-by-step explanation:
dP/dt = 0.0013 P (1 − P/6200)
Separate the variables.
dP / [P (1 − P/6200)] = 0.0013 dt
Multiply the left side by 6200 / 6200.
6200 dP / [P (6200 − P)] = 0.0013 dt
Factor P from the denominator.
6200 dP / [P² (6200/P − 1)] = 0.0013 dt
(6200/P²) dP / (6200/P − 1) = 0.0013 dt
Integrate.
ln│6200/P − 1│= 0.0013t + C
Solve for P.
6200/P − 1 = Ce^(0.0013t)
6200/P = 1 + Ce^(0.0013t)
P = 6200 / (1 + Ce^(0.0013t))
At t = 0, P = 1000.
1000 = 6200 / (1 + C)
1 + C = 6.2
C = 5.2
P = 6200 / (1 + 5.2e^(0.0013t))
You need to change the exponent from negative to positive.
The inflection points are where the population increases the fastest.
Answer:
Yes
Step-by-step explanation: