The electric field is given by volts/distance:
. The breakdown voltage of dry air is about 3x10^6V/m. So solving for V we get
or
The change in pressure measured across a given distance called a Pressure Gradient. The pressure gradient creates a net force that is directed from higher to lower pressure and is called the Pressure Gradient Force. ... As air increases in velocity, it is deflected by the Coriolis Force.
Answer:
8
Explanation:
(8√2)² = x² + x²
8² × √2² = 2x²
64 × 2 = 2x²
128 = 2x²
64 = x²
x = 8
give me brainliest please
Answer:
a)F=3 x 10⁻⁷ N
b)x=2.405 m
Explanation:
Given that
m₁=295 kg
m₂=595 kg
d= 4.1 m
a)
m₃=63 kg
r=d/2 = 2.05 m
The force between the mass m₁ and m₃
by putting the values
F₁₃=2.94 x 10⁻⁷ N
The force between the mass m₂ and m₃
by putting the values
F₂₃=5.94 x 10⁻⁷ N
The net force F
F= F₂₃- F₁₃
F=5.94 x 10⁻⁷ N-2.94 x 10⁻⁷ N
F=3 x 10⁻⁷ N
b)
Lest take at distance x from mass m₂ net force is zero.
Form above two equation
x²=2.01(4.1-x)²
x=1.42 (4.1-x)
x=5.82 - 1.42x
x=2.405 m
Answer:
14.49 g/cm²
Explanation:
I = Io e^-(ux)
Where:
I = 573
Io = 1045
x = 0.3 inches and
rho = 11.4g/cm^3
Using the conversion constant
1 inch = 2.54 cm;
0.3 inches = 0.3 * 2.54 cm
0.3 inches = 0.762 cm
I/Io = e^-(ux), or say
Io/I = e^(ux), taking the In of both sides
ln(Io/I) = ux, making u subject of formula
u = 1/x * ln(Io/I)
u = 1/0.762 * ln(1045/573)
u = 1.312 * 0.6
u = 0.787
Next, we say that
u/rho = 0.7872/11.4 = 0.069
And finally, we make
1/(u/rho) to be our final answer
Inverse of the answer is = 14.49 g/cm²
Therefore, the um^-1 in g/cm^2? is 14.49