Answer:
The degrees of freedom is 11.
The proportion in a t-distribution less than -1.4 is 0.095.
Step-by-step explanation:
The complete question is:
Use a t-distribution to answer this question. Assume the samples are random samples from distributions that are reasonably normally distributed, and that a t-statistic will be used for inference about the difference in sample means. State the degrees of freedom used. Find the proportion in a t-distribution less than -1.4 if the samples have sizes 1 = 12 and n 2 = 12 . Enter the exact answer for the degrees of freedom and round your answer for the area to three decimal places. degrees of freedom = Enter your answer; degrees of freedom proportion = Enter your answer; proportion
Solution:
The information provided is:
Compute the degrees of freedom as follows:
Thus, the degrees of freedom is 11.
Compute the proportion in a t-distribution less than -1.4 as follows:
*Use a <em>t</em>-table.
Thus, the proportion in a t-distribution less than -1.4 is 0.095.
I dont know the first answer but the 2nd is dad
Answer:
ac=-3, BC=57 I hope it will help you please follow me
Answer:
The answer is 1/3
Step-by-step explanation:
Let the events of getting the no. greater than 4 be (>4).
Then,
<em>n</em><em>(</em><em>s</em><em>)</em><em> </em><em>=</em><em> </em><em>6</em>
<em>n</em><em>(</em><em>></em><em>4</em><em>)</em><em> </em><em>=</em><em> </em><em>2</em>
<em>P</em><em>(</em><em>></em><em>4</em><em>)</em><em> </em><em>=</em><em> </em><em>n</em><em>(</em><em>></em><em>4</em><em>)</em><em>/</em><em>n</em><em>(</em><em>s</em><em>)</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>2</em><em>/</em><em>6</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>1</em><em>/</em><em>3</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em>