Answer:
Because the Earth has so much gravity, it can hold water, land, and life in it's atmosphere.
(Not sure what beaker you are talking about, so sorry) But I don't think the moon's gravity would have an effect on a beaker of water because the Earth's gravity is much more than the moon's.
I think you would be able to feel a little bit of Earth's gravity on the moon because the Earth's gravity pulled the moon into orbit, therefore, gravity on Earth my have some effect on the moon.
hope this helps!
Answer:
(a) m = 1.6 x 10²¹ kg
(b) K.E = 2.536 x 10¹¹ J
(c) v = 7.12 x 10⁵ m/s
Explanation:
(a)
First we find the volume of the continent:
V = L*W*H
where,
V = Volume of Slab = ?
L = Length of Slab = 4450 km = 4.45 x 10⁶ m
W = Width of Slab = 4450 km = 4.45 x 10⁶ m
H = Height of Slab = 31 km = 3.1 x 10⁴ m
Therefore,
V = (4.45 x 10⁶ m)(4.45 x 10⁶ m)(3.1 x 10⁴ m)
V = 6.138 x 10¹⁷ m³
Now, we find the mass:
m = density*V
m = (2620 kg/m³)(6.138 x 10¹⁷ m³)
<u>m = 1.6 x 10²¹ kg</u>
<u></u>
(b)
The kinetic energy will be:
K.E = (1/2)mv²
where,
v = speed = (1 cm/year)(0.01 m/1 cm)(1 year/365 days)(1 day/24 h)(1 h/3600 s)
v = 3.17 x 10⁻¹⁰ m/s
Therefore,
K.E = (1/2)(1.6 x 10²¹ kg)(3.17 x 10⁻¹⁰ m/s)²
<u>K.E = 2.536 x 10¹¹ J</u>
<u></u>
(c)
For the same kinetic energy but mass = 77 kg:
K.E = (1/2)mv²
2.536 x 10¹¹ J = (1/2)(77 kg)v²
v = √(2)(2.536 x 10¹¹ J)
<u>v = 7.12 x 10⁵ m/s</u>
Figure A shows cross section of a land form or rock. In Figure B, compression stress is applied on it. When compression stresses are applied on a rock, it squeezes the rock cause fold or fracture. The fault formed by compression stress is called thrust fault. If the compression stresses/ force continue to act on a rock it will converge and form thrust fault. In Figure C, tension stresses is applied on the rock. When a tension stress applied on a rock it deforms/ lengthen. There are three type of deformations occur due to tension stresses. One is elastic deformation, in which, rock retains it original shape when force/stresses are removed. Second is plastic deformation, in which rock lengthen and change occur permanently. Third type of deformation is result into fracture or breaking of rock. In Figure C, shear stresses are applied on rock. Shear stresses are applied with equal magnitude but in opposite direction. It cause breaking of rock.
Answer:
163.8 ft
Explanation:
In triangle ABD
= 155 ft
Using Pythagorean theorem in triangle ADC
= distance between the anchor points
distance between the anchor points is given as
it allows only a reduced number of electrons to flow through it.