Answer:
7.32g of HNO3 are required.
Explanation:
1st) From the balanced reaction we know that 2 moles of HNO3 react with 1 mole of Ca(OH)2 to produce 2 moles of H2O and 1 mole of Ca(NO3)2.
From this, we find that the relation between HNO3 and Ca(OH)2 is that 2 moles of HNO3 react with 1 mole of Ca(OH)2.
2nd) This is the order of the relations that we have to use in the equation to calculate the grams of nitric acid:
• starting with the 4.30 grams of Ca(OH)2.
,
• using the molar mass of Ca(OH)2 (74g/mol).
,
• relation of the 2 moles of HNO3 that react with 1 mole of Ca(OH)2 .
,
• using the molar mass of HNO3 (63.02g/mol).
So, 7.32g of HNO3 are required.
Answer:
When we say "chlorine wants to gain one electron", we speak of the radical atom. Chlorine as a free radical, Cl⋅ , is the chlorine atom that we say has 7 valence electrons and wants its 8th to form an octet. So, Cl⋅ , chlorine radical, is less stable, and Cl− , chlorine ion, is more stable
Answer:
-3
Explanation:
The oxidation state or oxidation number of an atom is the total number of electrons that an atom either gains or loses in order to form a chemical bond with another atom.
The complex anion here is [Cr(CN)6]3-.
Now, as the oxidation state of CN or cyanide ligand is -1, and if we suppose the oxidation state of Cr to be 'x', then; x - 6 = -3 (overall charge on the anion),
so x= +3. Hence the oxidation state of Chromium in this complex hexacyanochromium (III) anion comes out to be -3.
.