Well, its in the air, so the air is "upon" the ball. and when it comes down...you catch it, and throw it, and get someone out, and win the game, and just keep doing that, and boooommm you're and pro baseball player. Life is good
Without counting wind resistance, They will both reach the ground at the same time. If we apply the concept of kinematics, such as the equation vf^2=vi^2 + 2ad. This equation doesn't count how big or how heavy the mass is, it only focuses on how fast where they in the start and how far are both of them from the ground. So if they both have the same distance and same initial veloctity, then they will reach the ground at the same time.
For example, Try dropping a pen and a paper(Vertically) at the same height, you'll see they'll reach the ground at the same time.
If you count wind resistance, the heavier ball will hit the ground faster, because the air molecules will resist the lighter ball compared to the heavier ball.
Answer:
Explanation:
Work is equal to the product of force and distance.
The force is 8 Newtons and the distance is 15 meters.
Substitute the values into the formula.
Multiply.
- 1 Newton meter is equal to 1 Joule
- Our answer of 120 N*m equals 120 J
The work done is <u>120 Joules</u>
Answer:
22.05 Kg
Explanation:
Apply the formula:
GPE = Gravity . Mass . ΔHigh
2778.3 = 10 . Mass . 12.6
2778.3 = 126 . Mass
Mass = 2778.3/126
Mass = 22.05
Answer:
Explanation:
The torque of a force is given by:
where
F is the magnitude of the force
d is the distance between the point of application of the force and the centre of rotation of the system
is the angle between the direction of the force and d
In this problem, we have:
, the force
, the distance of application of the force from the centre (0,0)
, the angle between the direction of the force and a
Therefore, the torque is