Answer:
a) rate law1 = k[NO2]²
b) rate law2 = k[NO][O3]
Explanation:
NO2(g) + CO(g) → NO(g) + CO2(g)
NO(g) + O3(g) → NO2(g) + O2(g)
When [NO2] in reaction 1 is doubled, the reaction quadruples
Rxn is second order.
rate law1= [NO2]^a [CO]^b
rate law1= [NO2]² [CO]^0
rate law1 = k[NO2]²
When [NO] in reaction 2 is doubled, the rate doubles.
Rxn is first order
The ratio is 1:1
this makes the rate law2 = k[NO][O3]
You just have to find a conversion from amu to grams. For every 1 amu, there is 1.66×10⁻²⁴ grams. Thus,
Mass of proton = 1.0073 amu * 1.66×10⁻²⁴ grams/amu = 1.672×10⁻²⁴ grams
Since a proton is spherical in shape, the volume would be:
Volume = 1/6*πd³ = 1/6*π(1.0×10⁻¹⁵ cm)³ = 5.236×10⁻⁴⁶ cm³
Therefore, the density is equal to
Density = Mass/Volume = 1.672×10⁻²⁴ grams/5.236×10⁻⁴⁶ cm³
Density = 3.2×10²¹ g/cm³
Organisms decay in a solution. Minerals dissolve and crystalize. Rock fragments squeeze together
Answer:
*The model should show the carbon compounds enter as carbon dioxide
*The model should show the carbon compounds exit as 3-carbon molecules
Explanation:
In plants, carbon dioxide (CO2) enters the chloroplast through the stomata and diffuses into the stroma of the chloroplast—the site of the Calvin cycle reactions where sugar is synthesized. The reactions are named after the scientist who discovered them, and reference the fact that the reactions function as a cycle.
Metallic character increases as you move down an element group in the periodic table that is because elctrons become easy to lose as the atomic radius increases